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1.  Introduction 
 
The increasing complexity of system design and the emergence of new technologies make  
the design process the key issue in the microelectronics and computer-aided design (CAD) 
industries [1]. A complex system design has the following characteristics: hierarchical design, 
multiple design representations, and a large design space. A large system design typically 
includes multiple boards, a variety of implementation technologies, and interfaces. Design 
engineers must deal with many issues, such as partitioning among different boards, interface 
timing, and packaging. 

There are three important issues in system design. The first issue is design modeling.   

Design modeling defines the functionalities of the design and verifies its correctness by 
simulation. These models not only ensure design correctness but also greatly affect synthesis 
results. Design, methodology or workflow management in a Computer Aided Design (CAD) 
framework must support a seamless way of carrying out the design process as well as a suitable 
way of representing the design process. It must also support tool encapsulation in order to carry 
out the design process. Design data management deals with storing design data and capturing 
relationships such as version control and configuration binding. Design modeling and 
methodology management in relation to a novel execution environment and framework 
developed by this author (see description below) comprise the main issues discussed in this 
thesis. For a detailed analysis of design data management, see Kim [2]. 

CAD frameworks are design environments consisting of design tools that aid design activities. 
The CAD framework’s support for the design process has three parts: specification, execution, 
and services.  Specification corresponds to how tasks can be  

decomposed, what tools are available, and how they may be used.  Execution is concerned with 
what methodology or process to select for a given task, what tool to invoke, and how to invoke 
it. Services support the coordination of subprocesses and enforce consistency. Although the 
concept of the CAD framework can be applied to many different engineering design disciplines, 
the discussion here is concerned with high-level synthesis only. 
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2.  Methodology Management 
 
Methodology is a set of processes or approaches used to solve a given problem. Methodology 
management is a technique employed to control these processes or approaches so that a better 
solution can be found. In the CAD area, design methodology management provides “the 
definition, presentation, execution, and control of design methodologies in a flexible, 
configurable way” [3].  The goals of design methodology management are to help the designer 
reduce the design time and to produce ~ better design. 

In the last couple of decades, there has been a change in trends in the CAD community.  The 
main focus of the CAD framework has shifted from managing data and tools to managing the 
design process itself. 

Design methodology management should provide specification methods, an execution 
environment, and miscellaneous services. To choose appropriate specification methods, the 
following questions must be answered: How can tasks be decomposed? What tools are available? 
How will they be used? In the execution environment, the management system must provide a 
means of selecting the appropriate design methodology or process for a given task and must 
determine the choice and method of tool invocation. Miscellaneous services, such as graphical 
user interface for communicating between the user and system, supporting cooperating 
subprocesses in the system, and enforcing consistent designs, should also be included in the 
execution environment. 

The basic building blocks of a design methodology management system or a CAD framework 
are tools. In general, a tool cannot be decomposed into any subcomponents; thus, the CAD 
framework has no way to break a tool down into smaller tools. Each tool performs a specific 
function. A design methodology management system determines how to use these tools as well 
as when to use them. The sequence of tool usage is viewed as a design flow. 

A large electronic design has the following characteristics: 

• Hierarchical Design: A large design can itself be hierarchically organized, and the same is 
true for the design process. The whole design process can be broken down into several steps or 
subprocesses, where each subprocess can again be decomposed into multiple sub-subprocesses. 
A large system design can be partitioned into smaller functional subcomponents. Each of these 
subcomponents can be composed of other components. Multiple design teams can work together 
to produce this design. 

 
• Multiple Design Representations: A design process can be viewed as a series of data 
transformations from one representation to another. Each transformation produces a different. 
type of design data. Furthermore, the same design transformation can be used with different sets 
of constraints and design parameters. Consequently, each of these transformations creates a 
different version of the data. 
 
• Large Design Space: Many alternative processes for a task create many different versions of 
data, just as different values of design parameters lead to different results. As the size of design 
data increases, the time required to search the design database in- creases as well. Thus, a large 
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design space should be maintained such that an efficient way of searching through the database 
is possible. 
 
• Large Number of Tools: Many tools are involved in the system design process. These tools 
should be well maintained so that the right tool is used at the right time. 
   
These characteristics lead to the use of an integrated design environment or CAD framework that 
can manage such issues effectively and guide designers to produce viable designs,   

In [4], a CAD framework is defined as “a software infrastructure that provides a common 
operating environment for CAD tools,” In order for such a software infrastructure to provide a 
good integrated design environment, the CAD framework, should support the following services: 
Design data management, Design methodology management, Tool integration/encapsulation, 
and User interface [5]: 

• Design data management:  Design data management deals with the methods used to store and 
retrieve design data as well as maintain relationships (such as version, trans- formation, and 
configuration) and consistencies between designs. In the CAD design process, many different 
data files (either different intermediate results or different versions from the same task) must be 
stored and retrieved as needed, Thus, an efficient way of managing design data is necessary. This 
also includes version and configuration management. Design data management assists in the use 
of technology-independent design data. If the data is technology independent, these data can be 
reused in different design processes without changing them. 
 
• Design Methodology Management:  This should provide a formal representation method of 
the design process and a seamless way of carrying out the design process. Design methodology 
management selects the best tool for a given input and constraints, and guides the designer to 
produce the best design, In other words, design methodology management is responsible for 
selecting and executing an appropriate sequence of tools to produce a desired design adhering to 
the given specifications, Thus, it guides the user in selecting the right tools in the correct order. 
The CAD framework should also support concurrent engineering concepts. For these reasons, 
design methodology management has gained a lot of attention in the past couple of decades. 

• Tool Integration: CAD tools can be integrated into the design environment by using a well-
defined tool integration method. In order to handle many different tools which accept different 
types of input and produce different types of output, the CAD framework must provide an 
intertool communication mechanism. This facility ensures that all tools in the system can 
communicate with each other. 

• User Interface: The user interface should be easy to use and effective. It should also hide 
low-level implementation details as much as possible from the end user (e.g., tool-invoking 
sequences and commands). 
 
The block diagram of such a CAD framework is shown in Figure 1. The CAD framework helps 
the designer to reduce design time and errors to produce a better solution, 
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Figure 1. Black Diagram of CAD Framework 
 
 
2.1  Specification Hierarchy 
 
Task specifications are defined and organized into a specialization and generalization class 
hierarchy. Properties of general task specifications are also available in a special task 
specification where the general task specification is a parent of the special task specification. A 
child specification inherits its parent’s specification properties. For example, pre- and post- 
evaluation conditions can be inherited by children; however, any child specification can have its 
own condition through specialization. 
 
It is possible to decompose tasks hierarchically into simpler tasks until the individual tasks can 
be performed by single tool invocations. Methodologies are devised by hierarchically 
decomposing logical tasks until all tasks are terminal. A single tool selection can be considered 
to be a special case of decomposition in which the set of subtasks is a single terminal task. A 
specification node definition editor window is shown in Figure 2. An example of task hierarchy, 
the Layout Synthesis Task is shown in Figure 3. Among many layout design styles, three 
common layout design styles are Gate Array, Standard Cell, and Full Custom.  These design 
styles can be applied to any level of layout synthesis hierarchy. These style conditions can be 
passed on to children tasks in the hierarchy. However , Multichip Module (MCM) Layout should 
have different conditions to be imposed than the conditions for Printed Wiring Board (PCB) 
Layout, and Chip Layout because in MCM layout, interchip delay can be ignored.  
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Figure 2. Specification Definition Editor Window 

 

 

 

 
 

 

Figure 3. Layout Synthesis Task Hierarchy 
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3. The CAD Framework: Execution Environment 
 

The CAD framework execution environment is a software environment which helps designers in 
selecting and executing design methodologies by allowing the systematic exploration of the 
design planning space. The execution model within the execution environment is modeled based 
on Petri Nets. When inputs are available, tasks are executed and outputs are created. 

The execution environment allows backtracking, which occurs when the task cannot be 
accomplished. If the execution environment detects unsatisfactory results, the system is allowed 
to go back and try different alternatives. Another advantage of the execution environment is that 
it allows parallel exploration of the design space. Details of the execution environment are 
covered in Section 3. 

In this section, the execution environment is discussed. The execution environment of the 
proposed  CAD framework is modeled based on Petri Nest. A new approach to the execution 
environment, which dynamically constructs a process graph, automatically selects design 
alternatives, and automatically backtracks if the result is not satisfactory, is presented in this 
section. This section is organized as follows: First, an overview of the proposed CAD framework 
architecture is given in Section 3.1. The formal model of the execution model is explained in 
Section 3.2. In Section 3.6, the handling of multiple alternatives is explained. Other issues, such 
as constraints, process simulation, and version control, are covered in subsequent sections. 

 
3.1   Proposed CAD Framework Overview 

 
The proposed system is composed of several main components: Design Process Representation, 
Constraints, A Design Library, an Execution Environment or Cocpit, and Graphical User 
Interface (GUI).  An overview of the proposed architecture of the CAD framework is graphically 
depicted in Figure 4. Design process representation represents design methodologies using the 
productions of a process grammar. Productions codify the possible hierarchical decomposition of 
tasks, which designers use to build a process flow graph. The process grammar naturally captures 
the hierarchical character of the design process and allows systematic exploration of the design 
space. 

Design constraints are provided by the user. The system performs a preevaluation in order to 
select the best production or tool, and also performs a postevaluation after a task is finished. 
When preevaluation and postrevaluation processes are carried out, the system uses the 
constraints as input parameters. Constraints are items such as area, critical delay, die size, pin 
number, power consumption, etc. The Design Library contains various design data.  

The execution environment program, Cockpit, keeps track of the design status and communicates 
with the designer via the GUI. The GUI helps users in several ways. Users can browse the 
available productions via the GUI and assign one or more input design data files together with 
their control information. The design progress can be displayed either in the form of a production 
or a Petri Net structure. The design path is displayed if the user chooses the history menu. Design 
data examination and a display of scoring results are additional features of the GUI. 
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Figure 4. Block Diagram of System 
 
 
3.2 Execution Model 
 
The execution model provides for dynamic execution of tasks and the representation of state 
information. At a minimum~ the execution model allows the designer to access tasks and designs 
by tracking the information required to invoke tasks. The execution model constructs a process 
graph by selecting the proper production for each logical task. This selection is guided by 
invoking a preevaluation of the alternatives of the logical task. When an appropriate task is 
selected, the execution model either expands the graph or invokes a tool for the execution of a 
terminal task. After executing the tool, the execution model post-evaluates the result based on the 
criteria (constraints). If the result is not satisfactory, it backtracks to try another alternative.  
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The execution model is based on a Colored Petry Net and performs the following functions: 
 
• Dynamic construction of a process graph. 
 
• Preevaluation of the alternatives 
 
• Selection of a production for each logical task. 
 
• Execution of a tool. 
 
• Postevaluation of the results. 
 
• Backtracking if needed. 
 
The execution model creates design flows by reading the production graph, determines the 
possible design alternative processes, and invokes the right tool for execution or expands the 
logical task. In order to choose the right alternative. Cockpit performs a preevaluation of all 
available logical tasks. An evaluation function is associated with each logical task. When the 
preevaluation and postevaluation processes are carried out, Cockpit uses the constraints as one of 
the input parameters. 
 
Expansion is dynamically performed as the design process progresses. When the production 
graph is read by Cockpit and is converted into a corresponding Petri Net internal structure, a 
preevaluation function is called for each alternative and the results are posted, such as the score 
of each alternative, in the net. The highest score enables a corresponding transition. The 
scheduler in Cockpit now schedules or chooses which transition is to be fired based on resource 
availability. After finishing one path, the result is checked; this is called post-evaluation. If this 
does not agree with the anticipated result, the system backtracks to the selection point. and tries 
another alternative, 
 
3.3 Cockpit 
Cockpit is a routine of the execution environment which performs the following functions: 
Creating daemon processes (initial graph). 
 
• Keeping track of the design process. 
 
• Dynamically construct a process graph. 
 
• Scheduling task(s) by preevaluation. 
 
• Performing the postevaluation. 
 
• Interacting with the user. 
 
• Controlling the GUI. 
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Cockpit is implemented using the algorithm described in Figure 5. Cockpit initially creates 
several daemon processes which maintain task specific knowledge. Cockpit’s information about 
the design process comes entirely from an input file indicating a set of possible tasks and those 
decompositions that should be considered for each logical task. 

The user interacts with Cockpit, which keeps track of the current status of the design process and 
informs the user of possible actions. Cockpit’s display indicates to the user what design tasks 
have been completed so far and what tasks remain. 

To assist the user in choosing an appropriate action, Cockpit invokes several evaluation 
functions. The evaluation functions provide ratings for the possible task decompositions and 
check the results. The ratings help the system to select tools. Cockpit determines what 
decompositions are available for the remaining logical tasks. This information is then displayed 
to the user. 

Cockpit supports two modes of operation: manual and automatic. The manual mode is normally 
used for high-level decisions and stepping through the design process. The designer may wish to 
use the automatic mode for lower level decisions. In the manual mode, Cockpit waits for the user 
to select decomposition or execute a task. In this mode, the system performs preevaluation or a 
postevaluation and the system guides the user by showing the results. The user makes the final 
decision for selection of a production or backtracking based on the suggestions made by the 
system. When the user selects decomposition, Cockpit displays the new subtasks in place of the 
original task. When the user requests that a task be executed, Cockpit sends a message to the 
corresponding daemon process for execution. For terminal tasks, the tool invoker responds by 
invoking a tool. The user invokes the automatic mode by executing a logical task instead Qf 
selecting decomposition. In response to an execution message for a logical task, the daemon 
process uses encoded knowledge from a process graph to select a decomposition and then 
executes the sub tasks (also in automatic mode). If necessary, the designer may reverse any 
decision made by the daemon process in the manual mode. 

In the automatic mode, the execution m0del utilizes the Petri Net structure more naturally since 
there is no human interaction. Cockpit dynamically creates design flows by reading the 
production graph, determining possible design alternative processes and invoking the correct tool 
for execution or expanding the logical task. In the execution environment, Cockpit uses the 
evaluation function to determine the alternative. After finishing the task execution, Cockpit 
postevaluates the result. 

When the output of a task is not satisfactory, it is necessary to backtrack. Either different 
parameters must be supplied to some of the tools or different tools must be chosen; or 
alternatively, the task must be decomposed in an entirely different way. The designer may 
request that certain task decompositions be reversed. Additionally, if a decomposition was 
requested by a daemon process, that process can direct Cockpit to reverse it. Cockpit saves the 
state of the session before backtracking in case the designer later decides to cancel the reversal. 
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Initialization() 

  { 
     Start graph is selected; 
     Create initial Daemon process and place tokens (send message); 
   } 
Wait for message; 
     IF the message is from Execution process THEN 
         { 
             IF the message is WANT_EXPAND THEN 

               { 
                   Invoke Pre-Evaluation function; 
                   Select Production based on Pre-Evaluation; 
                   Display expanded process flow; 
                   Send EXPAND_THIS or FAILED message to Execution process; 
               } 
             IF the message is POST_EVAL THEN 

               { 
                   Post-evaluation; 
                   Send result POST_EVAL_OK or _FAIL to Execution process; 
                } 
             IF the message is FAIL_EXPANSION THEN 
                  Delete useless tokens; 
             IF the message type is FAILED THEN 
                   Kill the child process; 
          } 
      ELSE /* Message from Daemon process */ 

          { 
               IF the message is FAILED THEN 
                    Kill the child process; 
               ELSE 
                   { 
                       Create a Daemon for the subsequent task; 
                       Put the output token in the newly created Daemon’s input place; 

                    } 
           } 
      END IF; 
 
 

 
Figure 5. Algorithm for Cockpit 
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3.4 Daemon Processes 
 
Each daemon process is invoked (created) by Cockpit and execution process. Daemon processes 
are dynamic repositories of task-specific knowledge. Each message from the daemon process 
indicates the task being evaluated or executed and provides all the inputs and out- puts file 
names. The constraints may be included in one of the input files or may be passed to the daemon 
process directly. 
 
Each daemon process is activated by an event signaling the arrival of a token in its input or  
output places. If an input event occurs, the daemon process creates an execution process by 
sending the task name to Cockpit to create the process. For an output event, the daemon process 
checks the output token numbers, which is assigned by the user. If the number of tokens does not 
reach the required number, the daemon process tries a yet untried alternative by changing the 
input token color. If more than enough tokens are generated, the daemon process selects the best 
tokens. Each daemon process retains the following information: 
 
• Parent Task Name 

• Name of input places 

• Name of output places 

• Child Task Names 

• Information about the required output token numbers (counters) 

The procedure for daemon process is shown in Figure 6. 
 

 
 

Figure 6. Algorithm for Daemon Process 
 
 

Wait for messages; 
IF the message is from its parent (Execution) process THEN 
   { 
      IF the message is TOKEN_N THEN 
           Create a child Execution process; 
           (Send the production name to the child process) 
   } 
IF the message is from its child (Execution) process THEN 
   { 
      IF the message is FAILED THEN 
            Send the FAILED message to its parent (Execution) process; 
      IF the message is TOKEN_IN THEN 
            Send the TOKEN-IN message to parent (Execution) process; 
   } 
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3.5   Execution Process 
 
Each execution process is created by a daemon and receives a production name. The execution 
process is responsible for invoking a tool, asking for expansion, and asking Cockpit to do a 
postevaluation after finishing its job. Each execution process handles only one token at a time.  
For multiple tokens, one execution process is created for each token. The execution process 
contains information about input places, output places, and its task name. The corresponding 
algorithm is shown in Figure 7. 
 
 
3.6   Multiple Alternatives 
 
Several alternatives may be simultaneously explored. This helps the user to obtain better results 
by selecting the best solution among several solutions. There are two forms of parallel 
exploration of alternatives in the design process: use of multiple parameter alternatives and 
multiple production alternatives. For a given production, there may be several parameter choices 
available. If a production does not produce an output which meets the design constraints, the 
same production should be tried with different parameter sets until all possible parameter sets 
have been exhausted. In addition, a given logical task may be accomplished in several ways. 
Each methodology alternative represents a separate production for the logical task. 
Multiple alternatives can be expanded and executed concurrently if the user specifies multiple 
tokens in the logical production’s input place and/ or output place via the QUI. The system 
assumes one token is in each place if the user does not place any token in the input or output 
places of a production. There are two cases which should be considered for multiple alternatives: 

1. Multiple Tokens in the Input Place: 

The number of tokens indicates the number of productions to be simultaneously executed. If 
there is a child production which also has multiple tokens, it is carried out simultaneously. The 
total number of productions active at any given time is controlled by a global control variable, 
Total Production, and by resource constraints. 

2. Multiple Tokens in the Output Place: 
The number of tokens indicates the number of desired acceptable outputs. If the number of 
acceptable outputs reaches the token number, the production is considered a success. If not, the 
system backtracks and tries other productions. If the desired number has not been reached even 
after all the productions have been tried, all acceptable outputs are used for the next step 

Basically, the number of multiple token in the output place dictates the number of alternatives 
that must be tried unless the same input token is used as input to different transitions. These 
aspects are illustrated in Figure 8 and Figure 9. 

. Then multiple alternatives are executed simultaneously and several compatible outputs are 
produced, the system must select from among the requested number of outputs. Selection is 
based on the chosen selection strategy, first-available (FA) or best-choice (BC). 
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Execution() 
    { 
       IF Terminal task THEN 
            Execution of the terminal tool; 
            (Send TOKEN_IN message to parent Daemon process) 
       IF Logical task THEN 
           {  
                Send WANT-EXPAND message to Cockpit; 
                Wait reply from Cockpit; 
                     IF the message is EXPAND-THIS THEN 
                         { 
                             Expand the graph by creating one Daemon process for 
                                 each task node in the production; 
                             Send TOKEN-IN message to the child Daemon process; 
                             Wait for messages from these children Daemon processes; 
                             IF the message is from child Daemon process THEN 
                                  { 
                                      IF the message is TOKEN_IN THEN 
                                          { 
                                              Send POST_EVAL to Cockpit; 
                                             Wait for reply from Cockpit; 
                                              IF POST_EVAL-OK THEN 
                                                  Send TOKEN_IN to parent Daemon process; 
                                              IF POST_EVAL_FAIL THEN 
                                                  Send FAIL_EXPANSION, FAILED, WANT_EXPAND to 
Cockpit; 
                                          } 
                                      IF the message is FAILED THEN 

                                         { 
                                               Send message to parent Daemon process; 
                                               Exit;  
                                          } 
                                    } 
                            } 
                       IF message is FAILED THEN 
                              Send FAILED to parent Damon process and Exit; 
               } 
     }  
 
 

Figure 7. Algorithm for Execution Process 
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A problem can occur when multiple alternatives handle the output files. Since each alternative 
production creates an output and the file names are the same for all alternatives, overwriting to 
an existing output file should be prevented. To solve such a problem, different working 
directories are used for each token. 

 

 
 

Figure 8. Smaller Number of Tokens in the Output 
 
 

 
 

Figure 9. Larger Number of Tokens in the Output 
 

3.7 Process Simulation 
 
Based on the evaluation results, the execution environment makes suggestions as to which 
production and/or tool is best suited for the given input. Using these functions, together with  all 
the values assigned to each production design process simulations are possible without actual 
design process invocation. 
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The input file type, the file size, the maturity of tools and productions in the CAD community, 
and estimated time to finish a task given by the input file comprise several examples of 
parameters the evaluation function can use to determine the suitability of the production. Design 
process simulation allows the user to predict or expect certain results. 
 
 
3.8   Graphical User Interface 
 
GUI is used to establish communication between the user and the execution environment. 
Through GUI the user can do several things, such as set the initial graph, partially expand the 
process graph, and browse through the alternatives. 

The Production Editor Main Window is used to create, browse, and edit productions as well as to 
edit task node specifications and specify input/output node information. A top view of the editor 
window is shown in Figure 10. 
 
 

 
 

 
Figure 10. Production Editor Window 

 
 
In the case of a rollback, the display of the situation is as follows: First, the rollback message is 
displayed at the bottom of the Message window, ensuring that the user can see what has 
happened in the system. Then, the parent production graph (the graph displayed just before the 
expansion leading to this task) is redisplayed and the same preeva1uation process is invoked. 
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Cockpit must record this history; that is, when the user requests the execution history, the QUI 
displays the overall history using different colors, e.g., a failed path is drawn with red lines and a 
current path/success path is drawn with blue lines.  
 
 
3.9 Constraints and Checklist  
 
Constraints are used to select a proper tool for a given task, to execute the tool, or to verify the 
correctness of a design. Constraints must be managed properly so that the CAD framework can 
function properly. Area, maximum/minimum delay, power consumption, pin number, operating 
condition, maximum fanout, wire load, clock period, technology library, and testability 
requirement are several examples of such constraints in the computer hardware design.  

Kim [2] categorized constraints into four different categories:  performance constraints, 
environment constraints, relativity constraints, and selection constraints.  Some examples of 
performance constraints are area and delay; operating conditions are environment constraints. 
Relativity constraints restrict what other designs can be used in conjunction with a design when 
it is instantiated as a component, while selection constraints restrict what designs can be 
instantiated for a particular component of a design. This classification of constraints is helpful 
for analyzing characteristics of the constraints themselves, 
Baldwin introduced a new language to express constraints [6]. Although this language has been 
claimed to be powerful enough to express any kind of constraint, it has its drawbacks, Designers 
must learn the language syntax to express constraints, not a simple task for hardware designers. 

Kim [2] and Baldwin [6] considered constraints associated with design data only. However, in 
order to form a good CAD framework, there should be some way of answering a question like 
“Which tool (or program) produces a better result for a given input?”  These kinds of constraints, 
tool selection or production selection constraints, should also be handled. Several examples of 
such constraints aye tool release history, size of the tool, average execution time, and user’s 
preference.  These constraints are used by preevaluation functions.  

The quality of a design result depends on the selection of tools, design methodology, and design 
data from certain design libraries. Each tool has different qualities or capabilities, such as 
maturity of tools, the speed needed to produce output from given input, and the output quality 
produced using the given input data. Each designer can define any variable for a production and 
assign/modify a value in an ASCII format. An example of such definition is shown in Figure 11. 
When a production Arch_Syn is applied, the user uses a preevaluation function, named 
“preeval1”, in the current working directory. This routine is written by the user and precompiled. 
A postevaluation routine can also be defined as well. The next three lines consist of actual 
variables and values assigned by the designer . 
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Arch_Syn.PRE ./preeval1 
Arch_Syn.POST ./hello 
Arch_Syn.0 time 9 pref 3 history 4 
Arch_Syn.1 time 11 pref 2 history 5 
Arch_Syn.2 time 4 pref 6 history 2 
 
 
 

Figure 11. Production Scoring Example 
 
 
Designers write preevaluation functions using these values. For example, a very simple but 
complete preevaluation function is shown in Figure 12. Here, if the designer assigns different 
weights to the variables t, p, or h, a different evaluation result is produced, where t represents the 
time to finish this production, p represents the variable which holds the penalty value for 
converting the input file type, and h represents the time the production has been available. The 
weights are assigned by the designer based on experience or preference. In this example, the 
designer prefers a long history of the production and shows very little concern about the 
translating file type. 

Similar functions can be written for postevaluation functions. After each production is 
completed, the postevaluation function is invoked and determines whether to accept the result or 
not. 

 
 
#include <stdlib.h> 
#include <stdio.h> 
main(int argc,char **argv) 
{ 
int t,p,h; 
int score; 
 
if (argc < 7 ) 
  exit(-l); 
t=atoi(argv[2]); 
p=atoi(argv[4]); 
h=atoi(argv[6]); 
 
score = t*0.2 + p*0.l + h*0.7; 
 
exit(score); 
} 
 
 

Figure 12. Preevaluation Function Example 
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In this way, the specification and the execution environment can actually be separated. Different 
designers can also use different ratings without modifying the productions. 

The checklist is a utility similar to “reminder”, in which a checklist can be created by the 
designer. When the design process reaches a predefined point, the designer can browse the 
contents of the checklist. This feature is not directly related to the actual execution environment. 
The checklist helps the designer remember things that must be done. The breakpoint feature can 
help the system stop at a certain design point where the checklist can be examined. An example 
is shown in Figure 13. 

 

 
 
 

Figure 13. Br eak Point and Checklist  

 

3.10    Resource File 
 

Resource files are used to describe the details of each tool. These files contain information such 
as runtime parameters, environment variables, preconditions, postconditions, the full path name 
where each tool is located, input/output requirements, and machines where the tool can be 
executed.  Here, a makefile format is adopted. This resource file consists of two parts: The first 
part is a macro definition section and the grammar is: 
 
var = definition. 
 
The definition must be written in one line. For example, the VHDL simulator, vhdlan, can 
be defined together with its path name as  
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VHDLSIM = /home/pixel/146/synopsys/sparcOS5/sim/bin/vhdlan 
 
The second part is an execution file definition section and its grammar is 
 
exe_file : definition. 
 
The definition can be written in multiple lines, where each line corresponds to a command.  For 
example: a macro definition of a process which consists of emacs editor execution and then cc is 
 
emacs-then-cc : emacs $(I0) 
             $(CC) -c $(I0) 
            O0 $*(I0).o 
 
At any time, $(var) can be used to fetch the value of a macro previously defined; the predefined 
macros I0 and I1 are the inputs to the execution file No.0 and No.1 (emacs and cc), respectively. 
O0 filename means “filename” is used as the first (No.0) output file with the new extension .o in 
this example. 
 
For distributed environment, a line is added before any regular command and O* command. 
 
VHDLcomp:   Use localhost samisen calliope musette 
                         vhdl2xnf $(I0) 
                         O0 $*(I0) .xnf  
 
where Use <machine> line tells the program to execute the commands following the line on 
the given machine. There is no default machine, so even if the user wants the program simply 
to be run in a local machine, the user must still explicitly write the line Use localhost. 
The main advantage of using this file is that even if the system environment is changed, it is 
not necessary to recompile the system software since each tool description is not hardcoded’ 
in any of the software. Only the resource file should be changed. 
 
 
3.11 Load Balancing 
 
In a distributed environment, load balancing is one of the most important issues in system 
performance. All system performance depends on resource contention. In any computer system 
there are three basic resources: CPU, memory, and the input/output (IO) subsystem. Among 
these three types of resource usages, CPU usage is the main concern because most CAD tools are 
CPU intensive. 

Each process (or program) requires a certain number of CPU cycles to execute, and it is not 
possible for a single process to use the CPU alone until execution is finished. Usually, several 
processes share the CPU at one time. If loads are assigned to machines which are already heavily 
loaded, then the overall system performance is degraded: processes in a heavily loaded machine 
take a long time to finish) and the remaining tasks may depend on the results of the previous 
processes. 
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There are several ways to measure CPU contention. The simplest one is the UNIX load average, 
reported by the rup command, which shows the host status of remote machines. The load 
average tries to measure the number of active processes at any given time. A typical result of this 
command is 

              pixel       up 12 days,      6:38,      load average: 0.23, 0.19, 0.01 

The first load average (0.23) is measured over the last minute. The second and the third load 
average are measured over the last 5 and 15 minutes, respectively. 

In the proposed systemy the machine with the smallest load average at the time of task execution 
is used. Available machines are listed in the resource file. This at least ensures that a particular 
machine is not overloaded before assigning it a task. The selection criteria can be extended by 
examining the second and third load averages, from which the load trend can be inferred. 

Several problems remain associated with the method described above. First, the command rup 
does not guarantee the correct result. For example, if the Network File System (NFS) server 
crashes while a process is waiting for the disk IO to complete across NFS, the process is 
considered to have been running the entire time although nothing was actually happening. 
Another problem is that the load average does not account for priority. Finally, the load average 
cannot predict future events. 
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4. Routines 

 
4.1   Cockpit 

 

Global variables 

DLList<MProduction *> prod_db; / production database */ 
 
DLList<Token *> tokenList;  /* token list */ 
 
DLList<BreakPoint > bpList;   /* breakpoints list */ 
 
DLList<CheckList  *> ckList;   /* list of checklist */ 
 
MExtGraph *cpGraph;   /* the graph and expansions in the main window */ 
 
MGraph goGraph;   /* the final graph in the main window */ 
 
int ExecutionMode;   /* the execution mode, manual or auto */ 
 
MSpecNode *work_sn;  / the specnode the pointer is pointing at */ 
 
MTaskNode work_tn; /* the tasknode the pointer is pointing at */ 
         
User interface part functions (call backs) 
 
Cockpit-FileCB: 
   callback function for file menu: 
      open: 
    call yyparse() to read in production file. 
 
Cockpit-EditCB: 
    callback function for edit button on left panel: 
 
Cockpit-TokensCB: 
    callback function for token menu: 

Relationship between functions in Cockpit can be shown as in Figure 14. 
 
 
4.2 Daemon 

 
daemon.c 
 
For each group of tokens, the daemon will spawn an execution process to do the calculation. 
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The group names are stored in exec_name[][], input tokens are stored in exec-in-tokens[] and 
output tokens are stored in exec_out_tokens[]. TCP socket that is used to communicate with 
child execution process is stored in ch_soc[], socket is set to MWAITING~TOKEN if the input 
tokens are still not complete, set to MNON-EXIST if the child execution process is dying. 

 

 
 
 

Figure 14. Relationships between Functions 

 

 

l.  Daemon initializes. 

2.  Daemon waits messages from its parent execproc: 
 
• TERMINATE: daemon will exit after this message. 

• .TOKEN-IN: receive token from parent, the token group name is checked to see if there is 
already a record of that name in exec_name[], if so, the token is added, if there is enough tokens 
in this group to fire the transition, a child execproc will be generated to do the calculation. If 
there is no such group name record in exec_name[] , a new record is made and the corresponding 
Ch-soc[] entry will be set to MWAITING_TOKEN. 

• TOKEN-OUT: we actually do nothing here. 
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3.  Daemon waits messages from its child execproc: 
 
• FAILED: Child execproc has failed, in this case daemon will report this message to its parent 
execproc and then mark corresponding ch_soc[] to MNON-EXIST. The connection to this failed 
child is no longer used. 
 
• TOKEN~OUT: Child execproc is using the input t6ken. We send a TOKEN_OUT message 
to parent execproc ( if there is any). 
 
• TOKEN_IN: Read in this token, store it, and wait until there are enough tokens for this 
group, then report this group of output tokens to the parent execproc.  Close the connection (set 
ch_soc to MNON-EXIST). 

 
 
4.3   Execution Process 
 
execproc.c  
 
1. execproc initialize: Get node info and all the input tokens.  If the tasknode is a terminal node, 
then take away the input tokens, (send TOKEN_OUT to parent daemon, GUI_TOKEN_OUT to 
GUI). Find out the commands we are to execute from the resource file, execute them, then report 
the output tokens  
(send TOKEN_IN to parent daemon, GUI-TOKEN_IN to GUI).  If the tasknode is a nonterminal 
node, then send WANT_-EXPAND to GUI, asking for an expansion of this nontermina1 node. 
Then wait for reply from GUI.  The reply can be be either EXPA.ND_THIS, or FAILED.  If it 
received  EXPAND_THIS, then read in the necessary information. , Execproc does the 
expansion by creating one daemon process for each tasknode in the expansion graph and then 
waiting for messages from these child daemon processes: 
 
• FAILED: There is nothing to expand, send FAILED to parent daemon process and then exit. 
 
• TOKEN_IN: This message means some child daemon has generated outputs, so the execproc 
reads inn this token, then sees if this token should be sent somewhere.  This is done by looking at 
the expansion graph.  Send this token if necessary, and then look if this token is put into a 
specnode that is :mapped to a output specnode of the original tasknode  (the tasknode before the 
expansion); if it is, then    then store this token in out_tokens. If there are already enough tokens, 
then send message POST_VAL and those output tokens to GUI for  postevaluation.  Jhe reply 
can be POSTEVAL_OK or POST-EVAL_FAIL. If it is POSTEVAL_OK, we report these output 
tokens to parent daemon process (send TOKEN_IN).  If it is POSTEVAL_FAIL, this means the 
expansion we have chosen didn’t give us the correct result, so we have to choose another 
expansion (if possible). We do this by sending  FAIL_EXPANSION to GUI.  The GUI will fail 
the current expansion and delete the useless tokens. The execproc will then send 
WANT_EXPAND again to GUI to see if there is another possible expansion. 
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• TOKEN_OUT: This message means some child daemon is using its input token.  If this input 
token is mapped to an input token of the original tasknode, then we send TOKEN_OUT to the 
parent daemon.  Otherwise we do nothing.  
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5.   Data Structures 
 
class MgraphObject    /* base class of MSpecNode and MTaskNode */ 
   Data:  
       Widget widget; 
        /* the widget the object is attached to, should be NULL is no widget, 
            otherwise UnsetWidget() will fail */ 
 
        String name;  /* the name of the object */ 
 

     int x,y,width,height;  /* the position and size of object */ 

     MGraph *graph;   /* the graph who own this object */ 

     char pathName[];   /* the pathName is the MExtGraph */ 
      int hasToken;    /* set to True if there is token is this object */ 

Method: 
Constructor: 
MGraphObject(); 
/* 

this should never be called directly, it's supposed to called by 
the constructor of MSpecNode or MTaskNode. 

widget = NULL, graph = NULL, pathName[0}=0; hasToken = 0; 
*/ 

int IsA(); /* return the type of this object, can be GENERAL_OBJECT, 
SPEC_NODE, or TASKNODE */ 

GetName(), SetName(), GetX(), GetY(), SetX(), SetY(), 
GetWidth(), GetHeight(), SetWidth(), SetHeight(); 

SetWidget(Widget w); 
/* 

this will attach the object to the given object w, if it is already 
attached to one, the old one is detached (UnsetWidget), the widget's 
XmNuserData is used to store a UserData structure, which is used to 
by many functions as ObjevtEventHandler. 
ObjectRedraw will be added as XmNexposeCallback callback. 
ObjectEventHandler will be 
installed as an event handler of the widget, the event handler will 

 handle the move and resize of the object. 
*/ 
 
UnSetWidget(); 
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/* 
detach the object to widget, remove event handler and callback. 

*/ 
 
virtual functions: 
 
Draw(); 
Undraw(); /* ??? */ 
int isInside(int mx,int my); 
int FindIlntersect(int mx,int my,int *rx, int *ry);  

 
/* 

suppose we want to draw a line from the object to a point (mx, my), 
this function will figure out from which point ( returned by rx, ry ) 
should we start to draw this line. 
return value is True if mx, my is outside of object,  False if 
mx, my is inside of the object. 

*/ 

AddEdge(int type,MEdge *); /* attach an edge */ 
DelEdge(int type)MEdge *); /* detach an edge */ 
 

/* 
* about edges: 
* edges always goes from a specnode to a tasknode or from a tasknode 
* to a specnode, when an edge connect a specnode and a tasknode together 
* they must match, i.e. the tasknode must have corresponding named 
* in(out)put. 
* function IsObjectsConnectable can exam if two objects can be connected 
* to each other. 
* a specnode can have more than one fan-out, but it can only have 
* fan-in 1. a tasknode has fan-in equal to its GetNumInput(), fan-out 
*' equal to its GetNumOutput () . 
*/ 
 
 
class MSpecNode ( inherit from MGraphObject ) 

Data: 
DLList<Edge *> inEdgeList; /* there is only 1 edge is this list */ 
DLList<Edge *> outEdgeList; 

Method: 
   Constructor: 

 MSpecNode(); 
 MSpecNode(SpecNode *); 
 MSpecNode(const MSpecNode &); 
 MSpecNode(char *name,int width,int height); 
 MSpecNode(char *name); 
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Destructor: 
~MSpecNode(); 

/* 
all edges in inEdgeList and outEdgeList are DESTROYED) 
UnsetWidget, 
if it's owned by a graph, call graph->DelObj. 

*/ 
 
MTaskNode * find_input_node(); 
MTaskNode * find_output_node(MTaskNode *after); 

 
/* this function is to be used to traverse the outEdgeList 
 

this is needed because in daemon and execproc, the token's location 
is given by (tasknode, place_i, place-type), in gui, we use specnode's 
path name to represent token's location. we need to do the type 
conversion. 
path name -> (tasknode, place-i, place_type) 

find the MSpecNode by find_pathname-nth, then find_nth_obj. 
call tn = find_output_node to find the connected tasknode. 
call tn -> find_node_nth to find place_i. 

*/ 
 
 

class MTaskNode ( inherit from MGraphObject } 
Data: 

TaskNodeDef def; 
/* the definition of this tasknode, include information about inputs 

and outputs */ 

MEdge * inEdgeList[] ; 
MEdge * outEdgeList [] ; 
/* the reason to use array to implement in(out)EdgeList in MTaskNode 

is it's frequently used to use in(out)EdgeList[i] to fetch the 
ith in{out)put edge. */ 

Method: 
MTaskNode(); 
MTaskNode(char *); 
MTaskNode{char *,int width,int height); 
MTaskNode(TaskNodeDef *); 
MTaskNode(const MTaskNode &); 
/* copy constructor, the edge list is not copied, because it 

doesn't make any sense to do so */ 

int GetNumlnput(); 
int GetNumOutput(); 
int find_edge_nth(MEdge *, int type); 
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MEdge *find_nth_edge(int n, int type); 
/* return ( type == M_IN_EDGE ? inEdgeList[n] : outEdgeList[n] ); */ 

MSpecNode *find-nth-obj(int n,int type); 
/* return (MSpecNode *)( type == M_IN_EDGE ? inEdgeList[n]->startObj : 

outEdgeList[n]->endObj ); */ 
 
 
class MGraph 
Data: 
 
Widget widget; /* widget the graph is on */ 
 
DLList<MGraphObject *>objList; 
/* list that contain all the objects */ 
DLList<MEdge *> edgeList; 
/* list that contain all the edges*/ 
 
Method: 
/* Create, Copy, Delete */ 
MGraph(); /* create an empty graph */ 
MGraph(const MGraph &g); /* create a copy of graph g */ 
 
/* find index of object, and */ 
int find-obj-nth(MGraphObject *); /* return -1 if unsuccess */ 
/* find index of object given path name */ 
int find-pathname-nth(char *pathname); /* return -1 if unsuccess 
 
void Shift(int sx,int sy); 
/* shift the graph by sx,sy, when we expand the graph, sometime the graph 
grow out of the boundary, we might need to shift the graph */ 
void FindBoundBox(MBoundBox *bbox,MMap *map = NULL); 
/* calculate the bounding box of the graph, the mapped specnodes are not 
counted, result is stored in bbox */ 
 
void Expand(int i, MGraph *g, MMap *map); 
/* expand the ith node with graph g, with map */ 
/* this function is called by MExtGraph::Expand() */ 
 
} 
 
 
class MProduction { 
Data: 
MGraph leftGraph; 
Widget leftWidget; 
Widget rightWidgets; /* manager widget that contains all right side widget */ 
DLList<GraphWinData> rightSide; 
Method: 
MTaskNode *GetLeftSideTaskNode(); 1* get the tasknode of the left side */ 
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void AddAlt(MGraph *,const ProdInfo &) 
/* add this graph and produc;tion info as one of the right side of production */ 
void DelAlt(MGraph *) 
/* delete one right side */ 
 
void SetWidget(Widget lw,Widget rw)~ 
/* left side widget draw in lw, right side widgets are created as children 

of rw */ 
void UnsetWidget(); 
} 

/* 
purpose: 

start from a initial graph, given several expansions, we are to determine 
the expanded graph, and we are able add a new 
expansion, the new expansion can be based on the old one, e.g. we first 
expand node “1” to “1.1”,  “1.1”, “1.2”. then after that we can add a 
new expansion for node “1.1”. We can also delete an expansion, node 
deleting expansion for node “1” will automatically delete expansion f or 
node “1.*”. 

To distinguish a node from others, we use “pathname”. 
in each graph, there is a index number for every tasknode and specnode. 
we concatenate these index number together with ‘.’ in between. 
*/ 
 
class MExtGraph { 
Data: 
Widget widget; 
MGraph start_g; /* the graph we start from */ 
DLList<MExpansion> expansionList; 
MGraph end_g; /* the result of expansion */ 
Method: 
} 
 
/* 
purpose: 
a data structure to hold information for a group of token to run and display. 
to construct a RunEnv, we need the name of token, a parent Widget, 
an initial graph, a production list, a breakpoint list, a token list. 
*/ 
 
class RunEnv { 
Method: 
constructor, destructor, 
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AddToken(Token *);  /* add a token to the token list */ 
HandleInput(int soc); 
/* handle information from a communication socket, this function is always 

    called by a RunEnvList’s Run() function */ 
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} 
 
/* 
 
purpose: 
data structure for SEVERAL group of token to run and display. 
RunEnvList will create several RunEnv for each group of tokens it has. 
*/ 
 
class RunEnvList { 
Data: 
Widget pShell; 
/* this widget should be the cockpit’s drawarea */ 
 
RunEnv *envList[]; /* array of RunEnv, one for every group of tokens */ 
int n_group; /* how many groups */ 
char idList [] [];  /* the name of each group */ 
int dpy_mask[];  /* if want to show on screen, True, otherwise, False */ 
int n_daemons; /* how many daemons */ 
int daemon_soc[] ; /* each daemon's socket */ 
int daemon_node[] ; /* each daemon's node */ 
int node_daemon[] ; /* the daemon number for node */ 
XtInputId daemon_inputId[]; 
 
/* 
* after we create a socket for a daemon, 
* we need to call XtAddInput to add a callback to monitor the 
* socket, so we record the return value of XtAddlnput to this 
* array so that we can remove this callback later. 
*/ 
 
/* 
Method: 
to construct a RunEnvList, we need a parent widget, a initial graph, 
a production list, a breakpoint list, a token list. 
*/ 
 
Run(); /* run this */ 
Cont (BreakPoint bp); 
SelectShow(); /* set dpy_mask */ 
} 
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6.   Production File Grammar Specification 
 
file:      SPECDEFFILE specnode_defs | 

TASKDEFFILE tasknode-defs | 
PRODUCTIONFILE tasknode-defs productions | 
GRAPHFILE tasknode-defs graph; 
 

specnode_defs: specnode_def | specnode_defs specnode_def; 

tasknode_defs: tasknode_def | tasknode_defs tasknode_def; 

productions: production | productions production; 

 

parent: /* empty */ I PARENT QSTRING; 
specnode_def: SPECNODE QSTRING /* node name */ parent; 
tasknode_def : TASKNODE QSTRING parent inputs outputs 
terminal exefile preevalfile preevalref postevalfile postevalref 
terminal: TERMINAL INT; /* terminal or non-terminal node */ 
exefile: /* empty for non-terminal node */ I 
                 EXEFILE QSTRING; /* execution file for terminal node */ 
preevalfile: /* empty for terminal node */ I 
                 PREEVALFILE QSTRING /* pre-eval file for non-terminal node */ 
preevalref: /* empty for terminal node */ 
                  PREEVALREF QSTRING /* pre-eval reference file for non-terminal*/  
postevalfile: /* empty for terminal node */  
                  POSTEVALFILE QSTRING /* post-eval file for non-terminal */ 
postevalref: /* empty for terminal node */ J 
                   POSTEVALREF QSTRING /* post-eval reference file for non-terminal*/ 
inputs: input | inputs input; 
input: INPUT QSTRING; /* input specnode name */ 
outputs: output | outputs output; 
output: OUTPUT QSTRING; /* output specnode name */ 

 
productions: production | productions production; 
production: PRODUCTION LEFT graph rightgraphs; 
 
rightgraphs: rightgraph | rightgraphs rightgraph; 
rightgraph: RIGHT graphinfo graph; 
graphinfo: /* empty */  | HISTORY INT SIZE INT PREF INT; 
 
size: width height; 
width: WIDTH INT; 
height: HEIGHT INT; 
 
position: POSITION point; 
point: ‘(‘ INT  ‘,’  INT ‘)’; 
graph: GRAPH index_nodes edges; 
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index-nodes: index-node | index_nodes index_node; 
index_node: INT node; 
node: specnode | tasknode; 
 
specnode: SPECNODE QSTRING position size; 
tasknode: TASKNODE QSTRING position size; 
 
edges: edge | edges edge; 
edge: EDGE FROM INT TO INT intpts; 
intpts: /* empty */  | intpt | intpts intpt; 
intpt: INTPOINT point; 
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7.   How to Use 
 

7.1  Cockpit 
 

Prepare to start: 
1. Read in a production file. The production file can be read in by File...Open menu, or specified 
in the command line  “-p” argument. 
 
2. Move something to the main window as the start graph. Start graph can be either a single 
tasknode, or a graph consisted of several tasknodes and specnodes. If you want to start with a 
tasknode, choose Start...Tasknode, a tasknode editor window will appear, it's the same window 
as the one in production editor, so you can use drag and drop to move a tasknode into the main 
window. The other way is to start with a preedited start graph; by using the Start...StartGraph 
menu, a graph editor window will popup and let you edit start graph as you wish. The start graph 
editor's usage is very similar to how you edit graph in the production editor window. Please see 
production editor section for reference. After you've made a sta~t graph, use File..Start menu in 
graph editor window to put the start graph into main window, then you are ready for the next 
step. 
 
3. Add some tokens to some input places. To fire a network, we need some input tokens. Before 
starting to execute the model, put some input tokens into some input places.  As for what token 
should be put and where these tokens should be assigned, please refer to the concept section.  
There is a popup menu in the main window. Press the left mouse button when the pointer is 
pointing at the specnode where the token should go. From the popup menu, select Tokens...Add, 
and then answer the question dialog about the  information of the token. The token will be put in 
that specnode. The specnode is green when there are any tokens in it and black when empty. The 
tokens are shown above the left top corner of the specnode as a black dot. Find out how many 
token are in each specnode by just looking at the graph. To examine the content of a token, use 
Tokens...View from the popup menu. 
 
4. Set the in and out value for each tasknode. If adding more than one group of tokens to the 
start graph, then it's necessary to change the in and out value for some tasknode. The in and 
out values te11 the computer how many input token groups the tasknode  will be expecting, 
and how many output token groups it will generate. For example, if a tasknode has in=2, 
out=l, then it will wait until it has 2 groups of tokens in its input place. Then it will invoke 
the execution process to generate 2 output tokens.  Finally it will select one of them.  You 
can’t see the out value since it’s undefinable.  To change the in and out value for a tasknode, 
click the left mouse button on the tasknode to access the popup menu. Select “ In & Out” and 
then fill in the blanks.  
 
5. Set breakpoint if necessary. Breakpoints can be set if it's necessary to examine the output 
tokens generated in the intermediate step. Each breakpoint is  associated with a specnode. Click 
the left button on the specnode you want to set breakpoint and choose Tokens...Break,  Then a 
red stop sign will be underneathe reft corner of the ,specnode, showing that there is now a 
breakpoint. Execution will be stopped when new tokens arrive in this specnode. When the 
execution is stopped, continue by choosing the Token...Cont menu. 
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Start: 
 
Click the menu “Execute-Manual" or “Execute-Auto". 
 
The user will be asked to choose which group of tokens he wants to show on the screen. Each 
token group will use a separate window to perform execution and expansion.  
 
The graph will be executed and expanded. When a terminal tasknode is fired, the corresponding 
execution file will be executed (according to a resource file, which will be explained later) when 
a non-terminal tasknode is fired. If manual mode is selected, the user will be prompted to select 
an expansion graph from several alternatives. A popup dialog will show all available options, the 
preevaluation scores of these options.  If any option has is already tried and failed, it’s score is 
“FAILED". If there is no untried option, press “Cancel.” Otherwise select the production 
number, then press “OK”.  If auto-execution mode is selected, the right side  with the largest 
preevaluation score will be selected automatically. When the expanded non-terminal node gets 
tokens in its output place, it will perform a postevaluation.  
 
It’s necessary to run a rdaemon in the given remote machine. This is IMPORTANT because the 
program has to be able to communicate to the remote daemon to send files and commands. "The 
sequence is as follows: 
 
1. Start rdaemon on the remote machine first. If you want the remote machine to display x-
windows on the local machine, enter “setenv DISPLAY" before starting rdaemon. 
 
2. Then start cockpit. 
 
 
7.2   Editor 
 
Within the editor window, the user is allowed to create or modify productions and edit 
specifications. When the command editor is issued, an editor window is shown. There is one 
window for a left side of a production, and will be 0, 1, or more windows for the right side in the 
editor window in which the current production is displayed. Editor keeps a production database 
in memory, thus user can only edit one production (current production) at any time.  
 
• Left Side Window: Only tasknodes can be added to window (using drag and drop which are 
explained later). After a task node is added, all its input and output specnodes will be added 
automatically since input and output should be matched. The user may move or resize them. 
 
• Right Side Window: Tasknodes and specnodes can be added to a window (using drag and 
drop). Edges can be added use left-most mouse button: click the start object first, click any 
intermediate point if any, then click the end object. Move the mouse outside window when finish 
adding. If it is an invalid connection, (e.g., doesn't match the node definition) is tried, the system 
does not allow it and gives a beep sound.  Tasknodes and specnodes can be moved, reslzed, and 
deleted.  Edges can be deleted.  
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7.2.1  Task and Spec Subwindow 
 
Node Definition Window: 
 

The node definition will be organized in a tree structure. Select any node or unselect it at any 
time by using the left mouse button to click it. Selected nodes will be displayed in inverse video. 
Use the right mouse button to change the definition of node. 
 
Menu: 
 
• File: Allows read, modify, and save a file. 
 
• Edit: 
 

o Add: Will add a node as a child of selected node. If no node is selected, it will be 
added as a root. The user will be prompted for the detailed definition of that node.  A task 

node dialog box consist of: 

 
§ Node Name: Write your node name here. 

 
§ Terminal Task: Selects whether you want this be terminal task.  

 
§ Number of inputs: Push this button to bring up another dialog box to fill in 

input names. Press OK or Cancel when finished. 
 

§ Number of outputs: Push this button to bring up another dialog box to fill in 
output names. Press OK or Cancel when finished 

 
o Delete: delete the selected node, all the children of it will be move to the front. 
 

o Attach: Select a node before using this function, and then click another node 
(left button). The previously selected node will be attached to the newly selected 
one. 

 
o Detach: Detach the selected node. 
 

Drag and Drop: 
 

To add a node from node definition window to editor window, use the middle mouse button, 
click a node in the node definition window and hold the button down.  The node definition 
window must be on the top of the windows hierarchy. A drag icon will appear.  Drag it to the 
editor window. 
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Steps: 
 
Task Node: 
 
1.  From Main window Node menu, select the Task Node submenu. 
 
2.  From TaskNode Def window, edit the definition of any task nodes. 
 
{a) Add new task definition by selecting the Edit/Add submenu. When Add is selected,  enter 
task names, input specnode names, and output specnode names. 
 
(b) After every task node is added, save the task definition file using either Save As or Save 
under the File menu. 
 
(c) Attach and Detach under the Edit menu are used for organizing the task node hierachy. For 
exarnple, if task A is a superclass of task B; create a relationship A-B by selecting B, clicking the 
selection mouse button (the left-most button), clicking the Attach menu, and choosing A with the 
selection button. 
 
SpecNode: 
 
Using the SpecNode Definition window is almost identical to that of the TaskNode window, 
except it does not ask for input and output specs. 
 
Production Editor: 
 
1. Creating the left-hand side of the production.  Choose a task from TaskNode window with the 
middle mouse button.  Keep this button pressed and release it at the left-hand side window of the 
editor window. At this point, all input and output specnodes are connected properly, since these 
were defined when the task node was created. 
 
2. Choose Add Alt as a submenu of the Edit menu. A new window for the right-hand side of the 
production is just added. Notice that all input and output specs are already there since these are 
required for the production. 
 
3. Copy and paste by using middle mouse button from TaskNode Def or SpecNode Def for the 
alternative. Resize by selecting Size under the Edit menu and then using the right most button. 
Move the object by selecting: Move under Edit menu using the right most button. Draw edges by 
clicking the left most button. Click a "from" node and then click a “to" node. If the user tries to 
connect in an arbitrary fashion, the system will beep and not connect, because  the connection is 
defined in the task node definition. 
 
4. The new productions can be saved using either Save or Save As. 
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8.  FPGA Synthesis Example 
 

In this section, a synthesis scenario illustrates how the proposed CAD framework can be used. 
The tools and decompositions employed are intended to be representative, however, not 
exhaustive. 

 
The circuit being synthesized into is a Field Programmable Gate Array (FPGA) chip is a 
convolver for a signal processing applications. The primary output is a point multiplication result 
of input pixels. The objective is to design an FPGA chip from a VHDL behavioral description of 
the convolver. There are constraints on the number of connections between the FPGA chips and 
on timing. There is also a constraint on the area of the chip, the most serious limitation of FPGA 
design. 
 
The functional behavior of the component can be verified via simulation. This  simulation and 
debugging cycle is not part of the synthesis example. Prior to the beginning of synthesis, Cockpit 
is running with an input file indicating the standard tools and task decompositions available at 
our site. The primary task, called “FPGA Synthesis”, is initially displayed since this is a goal 
task. Upon selecting this task, Cockpit tells the user that it can be decomposed into the subtasks 
“VHDL Compile”, “Place and Route”, and “Bit Generation”. The user asks Cockpit to apply this 
decomposition and the FPGA Synthesis icon is replaced in the display by the others. The 
production is shown in Figure 15. 
 
 
8.1  VHDL Compilation 
 
The transformation of the VHDL behavioral description into the Xilinx netlist file (XNF) and 
symbol report file generation is the first step of VHDL compilation. When the VHDL Compile is 
expanded, Cockpit uses the production elaborate shown in Figure 16. When this production is 
applied, Elaborate checks the VHDL syntax and transforms the VHDL description into the 
proper Xilinx netlist file. A portion of the initial VHDL description is shown in Figure 17. 
 
8.2  Placement and Routing 
 
Once the XNF file generation has been completed, the next step is Placement and Routing.  In 
this step, the FPGA logic cells are defined, placed, and routed. Cockpit invokes two tools 
sequentially: xnfprep followed by ppr using the production shown in Figure 18. The first 
tool, xnfprep, takes the XNF file as an input and generates the FPGA logic cell definition 
and PRP report file. Then the second tool, ppr, is called to place and route the logic cells  
onto a FPGA chip. 
 
At this time, ppr cannot finish its placement since the whole logic cannot be fitted into a single 
Xilinx 4010 FPGA chip. Cockpit detects ppr's failure after Cockpit performs the post-evaluation 
function, e.g., by examining the ppr output file. Cockpit tries to backtrack to the Place and Route 
production to see if there is another alternative for this production, which it tries if available. For 
this example, however, there is no other alternative. Therefore, Cockpit now moves up to the 
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previous production, VHDL Compile. This production also lacks another alternative, whereupon 
the whole process fails. Thus, the design should be modified and the process should also be 
retried. 
 

 

 
 
 

Figure 15. Production of FPGA Synthesis 
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Figure 16. Decomposition of VHDL Compile 
 

 

 

 

 

PROCESS 
BEGIN 
     WAIT until Xp_Clk'EVENT AND Xp_Clk = '1'; 
      -- … 
     multtemp(31 downto 0) <= itobv(bvtoi(left_in(15 downto 0)) 
     * bvtoi(left_in(31 downto 16)),32); 
     addtemp(31 downto 0) <= itobv(bvtoi(addtemp(31 downto 0)) 
     + bvtoi(multtemp(31 downto 0)),32); 
     right_out{31 downto 0) <= addtempl(31 downto 0); 
     right_out(35 downto 32) <= left-in(35 downto 32); 
END PROCESS; 

 
 
 

Figure 17. Initial VHDL Description 
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Figure 18. Decomposition of Placement and Route 
 
 

8.3  Modified Design 
 
The original design is changed so that the new design can fit into a single FPGA chip while 
maintaining functionality. Since a single 16-bit multiplier takes up a large amount of space, this 
multiplier is decomposed into four 8-bit multipliers and several adders. A partial description of 
this decomposition is shown in Figure 19. The new description is used for the same process. 

 
 

8.4  Synthesis Results 
 

Bit Generation decomposition and all its steps are shown in Figures 20 and 21. 



 42 

 
 
PROCESS 
BEGIN 

WAIT until Xp_Clk'EVENT AND Xp_Clk = '1'; 
-- … 
addtemp1(15 downto 0) <= itobv(bvtoi(left-in(23 downto 16)) 

* bvtoi(left_n(7 downto 0)),16); 
addtemp2(23 downto 8) <= itobv(bvtoi(left_in(31 downto 24)) 

* bvtoi(left_in(7 downto 0)),16); 
addtemp5(23 downto 8) <= itobv(bvtoi(addtemp1(15 downto 8)) 

+ bvtoi(addtemp2(23 downto 8)),16); 
addtemp5(7 downto 0) <= addtempl(7 downto 0); 
addtemp3(15 downto 0) <= itobv(bvtoi(left-in(23 downto 16)) 

* bvtoi(left-in(15 downto 8)),16); 
addtemp4(23 downto 8) <= itobv(bvtoi(left-in(31 downto 24)) 

* bvtoi(left-in(15 downto 8)),16); 
addtemp6(23 downto 8) <= itobv(bvtoi(addtemp3(15 downto 8)) 

+ bvtoi(addtemp4(23 downto 8)),16); 
addtemp6(7 downto 0) <= addtemp1(7 downto 0); 
-- … 

    right-out(35 downto 32) <= left-in(39 downto 32); 
END PROCESS; 
 
 
 

Figure l9. Modified VHDL Description 
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Figure 20. Decomposition of Bit Generation 
 
 

Although the modified design is used for a new synthesis process, the designer can try different 
constraints and parameters using the original design, For example, one of the constraints subject 
to change is the operating condition, which is set to worst case commercial (WCCOM).  
Examples of parameters are random seed, placer-effort, and router-effort. As shown in Figure 
22, the final design occupies about 98 percent of the available Common Logic Blocks (CLBs) 
and 68 percent of the available function generators, The maximum speed at which this chip can 
operate is about 8 MHz, as shown in Figure 22 and 23. In Figure 23, the graph shows that most 
of the assignments of the nets are done at about a 10 MHz clock rate, although a few of them can 
operate at a 40 MHz rate. The slowest operations determine the overall rate of the chip's 
operation speed. 
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Figure 21. Decomposition of FPGA Synthesis 
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Partitioned Design Utilization Using Part 4010PG191- 6  
 

No. Used     Max Available    % Used 
----------------------------------------          ------------     ------------------    ---------- 
Occupied CLBs                                            395                  400                 98% 
Packed CLBs                                               275                  400                 68% 
----------------------------------------          ------------     ------------------    ---------- 
Bonded 1/0 Pins:                                           77                  160                  48%  
F and G Function Generators:                     551                  800                  68% 
H Function Generators:                                 58                  400                  14% 

   CLB Flip Flops:                                             64                  800                    8% 
   IOB Input Flip Flops:                                      0                  160                     0% 

IOB Output Flip Flops:                                 36                  160                   22% 
   Memory Write Controls:                                 0                  400                     0% 
   3-State Buffers:                                               0                   880                     0% 
   3-State Half Longlines:                                   0                     80                     0% 
   Edge Decode Inputs:                                       0                   240                     0% 
   Edge Decode Half Longlines:                         0                     32                     0% 

 
Minimum Clock Period: 125.9 ns 

  
 
 

Figure 22. PPR and Timing Report Summary 
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Figure 23. Graphical Timing Result 
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